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Propagation failure dynamics of wave trains in excitable systems
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We report experimental and numerical results on temporal patterns of propagation failures in reaction-
diffusion systems. Experiments employ the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction. The propa-
gation failures occur in the frontier region of the wave train and can profoundly affect its expansion speed. The
specific rhythms observed vary from simple periodic to highly complex and possibly chaotic sequences. All but
the period-1 sequences are found in the transition region between “merging” and “tracking” dynamics, which
correspond to wave behavior caused by two qualitatively different types of anomalous dispersion relations.
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I. INTRODUCTION

Propagating fronts and wave trains exist in a broad variety
of nonlinear systems that span the entire range of science and
engineering disciplines [1]. Examples include crystallization
fronts [2,3], action potentials on neurons [4], spreading epi-
demics [5], and traveling stripes on the skin of a mutant
mouse [6]. In excitable reaction-diffusion (RD) media [7],
propagating fronts are also the building blocks of more com-
plex spatio-temporal patterns such as rotating vortices [8,9]
and three-dimensional scroll waves [10,11] with the latter
being related to cardiac arrhythmias [12,13]. All of these
wave phenomena are governed, or at least strongly influ-
enced, by the specific interactions between the individual
wave pulses and the investigation of pulse interaction is
therefore of central importance.

Pulse interaction is typically discussed in terms of disper-
sion relations. The classic approach is to analyze the stability
and the velocity ¢ of infinite wave trains as a function of
their wavelength A. Most excitable RD systems have mono-
tonically increasing dispersion relations ¢(\) that converge to
the velocity of solitary pulses for large wavelengths. Further-
more, the refractory zone of excitation pulses gives rise to a
minimal wavelength below which no wave propagation oc-
curs. Such normal dispersion relations have been identified
for numerous experimental systems including the widely
studied Belousov-Zhabotinsky (BZ) reaction [14-16].

Already in the 1980s, theoretical and numerical investiga-
tions of excitable RD models revealed anomalous dispersion
relations that involve a single overshoot of ¢(\) or damped
oscillations [17,18]. These anomalies are especially likely in
systems that have a stable focus as their excitable rest state.
The first convincing experimental examples for nonmono-
tonic dispersion in excitable systems were measured using
chemical reactions, namely the oxidation of CO [19] and
the catalytic reduction of NO with CO [20] on Pt(100)
surfaces as well as the homogeneously catalyzed 1,4-
cyclohexanedione-Belousov-Zhabotinsky (CHD-BZ) reac-
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tion [21-23]. However, we note that this phenomenon also
exists in biological systems, such as neuronal tissue [24], for
which it is commonly referred to as “super-normal excitabil-

ity.”

The analysis of infinite wave trains does not always un-
ravel the rich dynamics of finite wave trains. An important
example is the motion of step defects during the growth, the
sublimation and the dissolution of certain crystals such as
silicon [25,26], potassium dihydrogen phosphate (KDP)
[27,28], and gallium arsenide [29,30]. Under certain condi-
tions, the defects obey anomalous dispersion relations that
cause attractive interaction between neighboring steps. The
resulting aggregation process is known as ‘“step bunching”
and can lead to the formation of macroscopic defects that
severely compromise the quality of semiconductors, laser
materials, and protein crystals. A similar phenomenon,
coined “wave stacking,” is observed in the CHD-BZ reaction
[21,22]. Figure 1(a) shows a typical time-space plot that il-
lustrates the formation of densely stacked pulse packets in
the wake of a slow leading pulse. All pulses nucleate at an
oscillatory pacemaker around x=0. Analogous behavior ex-
ists in pseudo-two-dimensional CHD-BZ media as exempli-
fied by the snapshot in Fig. 1(b).

Step bunching and wave stacking are governed by anoma-
lous dispersion relations and yield structures with a charac-
teristic wavelength (. This distance must obey the stability
criterion dc(\y)/dt>0 and c¢(\y) =c, where ¢ is the speed of
the solitary pulse or step. However, the minimal wavelength
of the dispersion curve can be larger than \,. Under these
conditions, trailing pulses approach the leading pulse and
vanish in a front-to-back collision. This behavior is referred
to as “wave merging” and has been observed in a catalytic
surface reaction [19,20] and in the CHD-BZ system [21,22].
Typical examples obtained from one- and two-dimensional
CHD-BZ systems are shown in Figs. 1(c) and 1(d), respec-
tively.

Recent numerical studies have revealed other dispersion
anomalies. These include bistability in a model of the BZ
reaction [31] and band gaps in a model of intracellular Ca**
dynamics [32]. Furthermore, our group reported the exis-
tence of finite bandwidth dispersion curves in the CHD-BZ
reaction [33,34]. In such systems, the wavelength of pulse
trains must fall between a minimal and a maximal wave-
length, while all other structures, including solitary pulses,
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FIG. 1. Examples of stacking (a, b) and merging (c, d) dynam-
ics. Space-time plots of wave propagation in quasi-one-dimensional
systems (a, ¢) and snapshots of waves in two-dimensional systems
(b, ¢). Initial concentrations: [H,SO4]=2.00M (a, b) and 0.60M (c,
d), [CHD]=0.11M, [NaBrO;]=0.07M (a, b) and 0.10M (c, d), and
[ferroin]=0.5 mM. The horizontal and vertical axes span 11.7 mm
and 224 s (a) and 9.5 mm and 500 s (c), respectively. Field of view:
(20.1 X 16.7) mm? (b) and (25.0X20.3) mm? (d).

are unstable. Moreover, finite wave trains undergo repeated
annihilation events of their leading pulses. Nonetheless, such
wave trains grow in size as each annihilated pulse has
“cleared the way,” so that subsequent fronts can propagate
farther. We therefore refer to this type of front dynamics as
“wave tracking.” Exemplary space-time plots of this behav-
ior are shown in Figs. 2(a) and 2(b) for a one-dimensional
system and in Fig. 2(d) for a two-dimensional system.

This paper presents quantitative measurements concern-
ing wave merging and wave tracking. In particular, we de-
scribe unusual propagation failures and firing sequences that
are characteristic for conditions between merging and track-
ing. Experimental observations are modeled and comple-
mented by numerical simulations using simple, three-
variable reaction-diffusion equations.

II. EXPERIMENTAL

A modified BZ reaction with 1,4-cyclohexanedione as the
organic  substrate [35,36] and either ferroin or
Fe[batho(SO3),]; as the redox catalyst and indicator is used
to perform the experiments. Aqueous stock solutions of 2.0M
sodium bromate (Fluka) and 0.5M 1,4-cyclohexanedione
(Aldrich) are prepared in nanopure water (18 M() cm) ob-
tained from a Barnstead EASYpure UV unit. The CHD so-
lution is filtered through a Whatman 0.2 um NYL filter. Sul-
furic acid (5.0M, Riedel-de Haén) and ferroin (25 mM,
Fluka) are purchased as standardized solution and used with-
out further purification. Fe[batho(SO;),]; is prepared in a
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FIG. 2. Wave dynamics in the tracking regime. Space-time plots
of wave propagation in quasi-one-dimensional systems (a,b), a dis-
persion relation (c) evaluated from (a), and a snap-shot of waves in
a two-dimensional system (d). Initial concentrations: [H,SO,]
=0.6M, [CHD]=0.20M (a, b) and 0.11M (d), [NaBrO;]=0.20M (a,
b), and 0.10M (d), and [Fe[batho(SO3),]3]=0.5 mM. The horizon-
tal and vertical axes span 8.1 mm and 600 s (a) and 13.1 mm and
570 s (b). Field of view in (d): (21.2X 13.0) mm?.

25 mM sulfuric acid solution by mixing a 3:1 molar ratio of
4,7-diphenyl-1,10-phenanthrolinedisulfonic acid disodium
salt hydrate (Acros) with ferrous sulfate heptahydrate (Fluka)
to yield the complex at a concentration of 25 mM.
Quasi-one-dimensional experiments are carried out in
capillaries (Drummond 20 uL. MICROCAPS®) with a length
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of 64 mm and an inner diameter of 0.63 mm for which the
dynamics within the system can be considered pseudo-one-
dimensional. Snap-shots of waves in quasi-two-dimensional
systems are obtained using batch reactors in which the solu-
tion is confined between two planar polystyrene plates
spaced at 0.4 mm. Absorption profiles are monitored with a
monochrome charge-coupled-device camera (COHU 2122;
640 X 480 pixel, 8 bit per pixel). The video signal is digitized
with a low-noise image-acquisition card (Data Translation
DT3155). Image data are acquired every (0.25—1.00) s
as  bitmap images using commercial  software
(HLImage++97). For image analysis we use programs writ-
ten in IDL (Interactive Data Language, Research System
Inc., Version 5.2). All experiments are performed at
(24+1) °C.

III. EXPERIMENTAL RESULTS

Figure 2(a) illustrates the dynamics of tracking waves in a
pseudo-one-dimensional CHD-BZ system. The vertical and
horizontal axes represent time and space, respectively, with
time evolving in upward direction. Within the time-space
plot, each oxidation pulse generates one bright band. In this
particular example, all wave pulses nucleate from an oscilla-
tory defect at the left boundary of the system, the open end
of the capillary, where bromine escapes from the solution
into the ambient atmosphere. They show the main character-
istics of tracking waves namely propagation failure after a
finite distance that increases with each pulse annihilation,
thus, causing an overall expansion of the wave pattern.

The expansion process can be described by the motion of
a virtual boundary which connects the coordinates x,(¢) at
which the nth pulse vanishes. For the example shown in Fig.
2(a), the average velocity of this boundary is 6.3 um/s and
thus one order of magnitude slower than the average pulse
speed of 70 wm/s. Furthermore, the expansion speed de-
creases with increasing times elapsed between an annihila-
tion event and the arrival of the next pulse. This dependence
is more pronounced for the experiment shown in Fig. 2(b).
This time-space plot reveals a sawtooth-shaped expansion
line of the wave train boundary and the wave train undergoes
two major size reductions during the analyzed time interval.
In between those “catastrophes,” however, the pattern grows
at a nearly steady rate.

Using the data in Fig. 2(a), we analyze the dependence of
pulse speed ¢ on the time elapsed between subsequent fronts,
which we will refer to as the period 7. To a certain extent
these data are a good approximation of the system’s disper-
sion relation. Figure 2(c) shows that pulse speeds vary in a
nonmonotonic fashion between approximately 60 um/s and
80 um/s. Maximal speeds are found for periods around
35 s. Moreover, no wave pairs exist if the trailing front ar-
rives at a given point less than 17 s after the leading front.
This value is a good approximation of the lower end of the
dispersion curve and corresponds to a minimal wavelength
of about 1.1 mm.

In contrast to anomalous dispersion curves of stacking
and merging waves, Fig. 2(c) reveals a maximal period
above which no wave propagation occurs. For the given ex-
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FIG. 3. Dependence of the tracking velocity ¢, on [NaBrOs]. At
higher concentrations of NaBrOs, i.e., in the merging regime, ¢,
becomes the velocity of the leading front. Other initial concentra-
tions are the same as in Figs. 2(a) and 2(b).

perimental conditions, we find this value to be 66 s. Conse-
quently, the dispersion relation for tracking waves is limited
to a finite band between 17 s and 66 s. To our knowledge,
this is the first quantitative measurement of a finite band-
width dispersion curve in a nonlinear RD system. There are
numerous intriguing phenomena that result from this peculiar
feature including the absence of stable solitary pulses. These
phenomena also affect the wave dynamics in two-
dimensional systems as exemplified by the snapshot shown
in Fig. 2(d). Here, several spiral waves are organizing small
domains filled with wave patterns. In contrast to common
excitable systems, these domains are not bound by a continu-
ous, closed front, but pulses annihilate and form numerous,
nonrotating defects. The domains expand similarly to the
one-dimensional wave trains shown in Figs. 2(a) and 2(b).
However, preliminary analyses indicate that the local curva-
ture of the domain boundary influences its growth velocity.
This effect causes concave (convex) segments to expand
slightly faster (slower) than planar boundary regions. In par-
ticular, concave segments are frequently encountered as they
are formed in the collision-induced fusion of domains.

An important feature of tracking waves is their ability to
expand into wave-free regions through repeated pulse anni-
hilation rather than through a stable, frontier pulse. This dif-
ference is also reflected in the typical expansion velocities of
tracking waves. Figure 3 compares the average growth ve-
locities of one-dimensional wave patterns for CHD-BZ sys-
tems with initial bromate concentration between 0.16M and
0.25M and otherwise identical conditions. This concentration
range spans through the entire tracking and merging regime
(labeled “T” and “M” in the figure, respectively). Below
0.16M no wave structures are observed, while concentrations
above 0.25M yield stacking waves [cf. Figs. 1(a) and 1(b)].
Figure 3 shows that the expansion velocity of wave patterns
increases with increasing concentration of bromate. Around
0.225M (dotted line), we observe the transition from tracking
to merging waves. The transition is accompanied by a pro-
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FIG. 4. Experimental space-time plots of wave dynamics in the transition region between tracking and merging and corresponding
diagrams showing the time AT, elapsed between the (n—1)st and the nth pulse death. Initial concentrations as in Figs. 2(a) and 2(b), except
[NaBrO;]=0.21M (a), 0.22M (b), 0.23M (c), and 0.24M (d). The horizontal and vertical axes span 6.0 mm and 250 s, respectively.

found increase in the expansion velocity that nearly doubles
from tracking (system’s effective growth velocity) to merg-
ing (velocity of the slow propagating leading pulse). This
result reemphasizes the qualitative differences between
tracking and merging wave trains.

The growth of tracking wave patterns is closely tied to the
pulses’ ability of propagating slightly farther than their pre-
decessors. This rather short but essential process suggests
that the wave-free region is in a strongly inhibited state,
while the concentration levels of this inhibitory species are
greatly reduced within wave trains of sufficiently short
wavelength. The overall tracking wave pattern grows at a
constant speed ¢, which depends on the wavelength of the
wave train \;, the decay length A; of pulses entering the
steady-state medium at the leading edge of the pattern as
well as on their average speed c¢; within the pulse train
[33,34] as follows:

_ A
_CiAi+)\i'

¢ (1)
Analysis of experimental data in Fig. 2(b) yields X\,
=2.15 mm, A;=0.18 mm, ¢;=76 um/s, and ¢,=6.1 um/s,
which is in good agreement with the value of ¢,=5.9 um/s
predicted by Eq. (1).
Closer inspection of the transition region between merg-
ing and tracking reveals intriguing details that relate to the

timing of propagation failures of the individual wave pulses.
Figures 4(a)-4(d) show time-space plots obtained from ex-
periments with pseudo-one-dimensional CHD-BZ systems.
The initial concentration of bromate varies between 0.21M
and 0.24M while all other concentrations and parameters are
kept constant.

The time-space plots are complemented by graphs show-
ing the time AT, elapsed between the (n—1)st and the nth
pulse death. At [NaBrO;]=0.21M (a), the pulses undergo
propagation failures at an essentially constant period of 25 s
and no leading wave pulse exists. Accordingly, we character-
ize these dynamics as simple tracking. However, at a slightly
higher concentration of [NaBrO;]=0.22M (b), propagation
failures occur according to a more complex rhythm, namely
repeating sequences of two long AT, values (26 s and 23 s)
that are followed by a short value of about 8.5s. At
[NaBrO;]=0.23M (c), the rhythm follows a simpler short-
long pattern (4.5 s and 30 s). Moreover, within the time-
space plot every second pulse curls upward, thus indicating a
prolonged lifetime of these pulses. At [NaBrO;]=0.24M (d),
the system has reached simple merging that allows for the
existence of a stable, slow moving frontier pulse. Further-
more, the rhythm of propagation failures has settled to a
constant period of about 29 s.

More complex sequences of propagation failures can be
observed for other bromate concentrations around the transi-
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FIG. 5. Experimental space-time plots showing complex wave
dynamics and corresponding analyses of AT, Initial concentrations
as in Fig. 2(a) and 2(b) except [NaBrO3]=0.20M (a) and 0.22M (b).
The horizontal and vertical axes span 5.4 mm and 600 s (a) and
8.6 mm and 450 s (b).

tion point. Unfortunately, they tend to be rather unstable and
typically reveal no discernible pattern over the lifetime of the
reaction system. We obtained, however, some satisfactory
data from experiments with slightly different initial condi-
tions. Two examples are shown in Fig. 5 in terms of time-
space plots and their corresponding AT, diagrams. The wave
dynamics in (a) are dominated by a AT, of about 23 s but
also feature intermittent occurrences of pairs of short and
long values (approximately 8 s and 30 s). The example in (b)
is characterized by two distinct phases that are reminiscent of
tracking with a simple short-long pattern and “pure” merg-
ing. The corresponding transitions are reminiscent of phase
slips. In particular, it appears that the tracking-to-merging
“switch” is triggered when the short period is nearly zero.
This allows the next pulse to transform into a slow moving
frontier pulse with long but finite lifetime. Moreover, one can
clearly discern that the overall rate of pattern expansion dur-
ing the merging type phase is larger than during the tracking
type growth. This observation is in qualitative agreement
with the data shown in Fig. 3.

IV. NUMERICAL RESULTS

In the following, we describe numerical simulations that
aim to provide additional information on pulse dynamics in
systems between merging and tracking. In particular, we
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demonstrate that complex sequences of propagation failures
can be found in models of excitable reaction-diffusion sys-
tems.

Our simulations are based on a generic model of excitable
reaction-diffusion media that involves one activator (1) and
two inhibitor species (v,w),

%=V2u+l(u(1—u)u—v+w>, (2)
ot € a
%:u—v, (3)
J
= B(5=w) = yuw, )

where €, a, B, &, and y are dimensionless constants. This
model is an extension of the two-variable Barkley model
[37] and has been used earlier to investigate various types of
wave dynamics in excitable systems with anomalous disper-
sion [33]. Furthermore, it has similarities to more realistic
models of the BZ reaction such as the Orgeonator [38,39]
that describes the dynamics of the chemical key species bro-
mous acid (HBrO,), the oxidized form of the catalyst, and
bromide ion (Br™). However, our equations involve an addi-
tional source [+86 in Eq. (4)] of bromide ion similar to cer-
tain modifications of the Oregonator model that aim to de-
scribe the inhibitory effects of molecular oxygen and/or light
[40].

All simulations are performed for one-dimensional media
with no-flux boundary conditions using Euler integration.
Since systematic analyses require long computational runs,
most of them are carried out on an IBM eServer pSeries 690
computer using OpenMP for parallelization. The time step
and the grid spacing are typically 1 X 10™* and 0.1, respec-
tively or better. The typical system length and time interval
simulated are 1000 and 500, respectively. Wave trains are
created by perturbing the u value at the left boundary with a
constant period to obtain continuously expanding systems.
With the exception of , all model parameters are kept con-
stant at e=1.0X 1072, ¢=0.7, 8=0.3, and y=5.0. However,
we note that qualitatively similar phenomena are found for
other sets of parameter values and, in particular, for the com-
putationally more expensive case in which all three species
undergo diffusion with equal or similar diffusion constants.

Figure 6 shows a sequence of time-space plots for six
different values of the model parameter 6. Like in Fig. 4,
these plots are complemented by diagrams showing the time
elapsed between subsequent propagation failures. The initia-
tion period is kept constant at T;,;=5.0. The data in Fig. 6(a)
show a typical example of wave tracking where wave pulses
vanish at a constant period. As the parameter J is decreased,
these simple dynamics give rise to more complex sequences
of propagation failures and eventually lead to simple merg-
ing. Qualitatively, these numerical results are in very good
agreement with our experimental findings. Two of the nu-
merical simulations, which could be observed experimentally
in a stable pattern, are the dynamics with two tracking events
followed by one merging event [see Fig. 4(b) and Fig. 6(c)]
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FIG. 6. Numerically obtained space-time plots and their corresponding AT, diagrams for the following J-values: 0.2700 (a), 0.2670 (b),
0.2666 (c), 0.2660 (d), 0.2652 (e), and 0.2640 (f). The horizontal space and vertical time axes span 150 and 100 units, respectively. Wave
trains are created at a constant period of 5.0. The other numerical parameters are a=0.7, 8=0.3, e=1072, and y=5.0.

as well as the alternating short-long pattern [see Fig. 4(c) and
Fig. 6(d)].

Figure 7 shows a plot of the AT, dependence on the pa-
rameter 6. Within the narrow transition interval, we find
simple period-1 merging and simple period-1 tracking for the
smallest and the largest 6 values, respectively. The most pro-
nounced transition state exists around 6=0.2660, which is
characterized by a simple short-long rhythm similar to dy-
namics shown in Fig. 6(d). This rhythm persists from &
=0.2653 to 6=0.2664. About halfway through this interval,
the AT, values show a striking cusp that occurs when the
short-period branch approaches zero. We note that this fea-
ture is caused by a simple reversal in the order of propaga-

[a8)

1
TSRS e
13

T ! 1
0.2660 0.2665 0.2670

S

T T
0.2650 0.2655

FIG. 7. Numerical results of the A7, dependence on the param-
eter 6 revealing a variety of dynamical states in the transition be-
tween the merging (M) and the tracking (T) regime. All numerical
parameters are the same as in Fig. 6.

tion failures: on the right-hand side of the cusp (i.e., the high
d, tracking type side) the pulses undergo propagation failures
according to their order of initiation. On the left-hand side
(i.e., the low &, merging type side), however, pulses vanish
according to the sequence “2,1,4,3,6,5,...,” where the num-
bers denote the order of pulse initiation.

In addition to the simple short-long rhythm, we find
period-3 and period-4 patterns around 6=0.2666 and o6
=0.2668, respectively. Other intricate patterns as well as pos-
sible examples of aperiodic and chaotic behavior are also
discernible, but they are found in much narrower intervals of
our bifurcation parameter 8. This finding is in good, qualita-
tive agreement with our experimental measurements that
yielded robust period-1, period-2, and period-3 patterns (cf.
Fig. 4) while all other patterns were highly susceptible to
small changes of the system (cf. Fig. 5).

To obtain further insights into the dependencies control-
ling the dynamics of propagation failures, we study the pulse
evolution as a function of the wave train’s initiation period
T, Notice that all simulations above were carried for T
=5.0. Figure 8 shows the bifurcation diagram of AT, with
respect to the period of pulse initiation. All system param-
eters are identical to the values specified above and &
=0.2660 which, at T;;=5.0, corresponds to the simple short-
long pattern shown in Fig. 6(d). Moreover, the data in Fig. 8
are compiled from the propagation failures of 20 consecutive
waves starting with the sixth wave. The first five periods are
ignored to avoid transients and possible artifacts caused by
the specific perturbation employed in the initiation of the
pulses. Such atypical behavior is clearly discernible in Fig. 6
and was also excluded before generating the bifurcation dia-
gram in Fig. 7.

As expected, the results in Fig. 8 reveal simple short-long
rhythms for initiation periods around 5.0. Pulse initiations at
periods below T;,;=~3.5 fail to generate a pulse for every
perturbation because the given system is unable to support
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other numerical parameters are the same as in Fig. 6. The dashed
line indicates AT, =T;;.

such high-frequency wave trains. Between T;;~5.4 and
T, = 10, complex patterns are observed that involve numer-
ous AT, values. The latter values are mainly above AT,
=10 and only few are below 3, which creates the impression
of a forbidden window at intermediate values of AT,. For
even longer initiation periods (Ti,= 10-20), we find pre-
dominantly period-1 behavior with AT, values that are sig-
nificantly larger than T;,;. The difference between the rate of
propagation failure and the rate of pulse initiation is simply
caused by the expansion of the wave train. For even larger
values of T, this difference vanishes and wave initiation
fails to create an expanding wave pattern.

V. CONCLUSIONS

In conclusion, we have presented the first evidence for
complex rhythms caused by propagation failures of finite
wave trains in reaction-diffusion media. These complex
rhythms are found within the transition region between dif-
ferent forms of expanding pulse trains. Specifically, this pa-
per focused on the transition between wave merging and
tracking, but preliminary experimental and numerical results
indicate that similar phenomena also exist for the transition
between wave stacking and merging. One experimental ex-
ample of the latter transition behavior is shown in Fig. 9.
After five stacking events, two fronts merge with their pre-
ceding wave at r=55 s and =135 s (indicated by the hori-
zontal arrows), followed by other stacking events.

All of these different wave dynamics were discovered
only recently and they result from anomalies in the system’s
dispersion relation [21-23,33,34,41]. In this context it i$ im-
portant to emphasize that these so-called anomalies are the
normal case for important, although understudied, classes of
excitable media such as systems with a stable, focuslike
steady state. Moreover, very similar phenomena exist during
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FIG. 9. Space-time plot of wave dynamics in the transition re-
gion between merging and stacking. Initial concentrations:
[H,S0,]=0.6M, [CHD]=0.11M, [NaBrO;]=0.15M, and [ferroin]
=0.5 mM. The horizontal and vertical axes span 13 mm and 300 s.

the propagation of charge densities in semiconductor super-
lattices [42].

The various rhythms of propagation failures reported in
this study show a remarkable variety. Although the most
abundant patterns are the period-1, period-2, and period-3
rhythms, we also found more complex examples as well as
indications for aperiodic and chaotic behavior. The overall
dynamics share many similarities with purely temporal sys-
tems such as coupled oscillators and media with mixed-mode
oscillations [43]. These temporal systems have been exten-
sively studied in chemical, electrochemical and biological
systems and their analyses usually employ concepts such as
firing numbers and Farey sequences. Despite many similari-
ties it appears that there is a wealth of new phenomena to be
discovered in the context of propagation failures; especially
if one includes wave trains in two- and three-dimensional
systems. Moreover, the propagation failures in our system
are truly spatio-temporal in nature and affect spatial aspects
such as the overall expansion of the wave train.

Last, we emphasize that our results are not limited to
chemical reaction-diffusion media, but similar dynamics are
expected to exist in a much broader spectrum of experi-
ments. In particular, it will be interesting to explore these
complex, transition dynamics in other, physical and biologi-
cal, systems with nonmonotonic dispersion relations. These
systems include but are not limited to excitable neuronal and
cardiac tissue in which excitation waves are carriers of bio-
logically relevant information.
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